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ABSTRACT 
When validating assessment models built with data mining, 
generalization is typically tested at the student-level, where 
models are tested on new students. This approach, though, may 
fail to find cases where model performance suffers if other aspects 
of those cases relevant to prediction are not well represented. We 
explore this here by testing if scientific inquiry skill models built 
and validated for one science topic can predict skill demonstration 
for new students and a new science topic. Test cases were chosen 
using two methods: student-level stratification, and stratification 
based on the amount of trials ran during students’ 
experimentation. We found that predictive performance of the 
models was different on each test set, revealing limitations that 
would have been missed from student-level validation alone. 

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data Mining; J.1 
[Administrative Data Processing]: Education; K.3.1 [Computer 
Uses in Education]: Computer-assisted instruction (CAI), 
Computer-managed instruction (CMI) 

General Terms 
Measurement, Reliability 

Keywords 
Science Microworlds, Science Simulations, Science Inquiry, 
Automated Inquiry Assessment, Educational Data Mining, 
Learning Analytics, Validation, Generalizability, User Modeling 

1. INTRODUCTION 
Data mining/learning analytics is a powerful approach for 
building predictive models (“detectors”) that determine if a 
student is engaging in a particular behavior (e.g. [1], [2]), and 
models that assess whether students demonstrate somewhat ill-
defined skills within interactive learning environments (e.g. [3], 
[4]). Building models using data mining makes validation of those 
models easier, because processes like cross-validation exist to 
estimate how well they will generalize to new students and tasks 
not used to build them. Such estimates are important because they 
can provide assurance that the behavior / assessment models will 
correctly identify students who lack skill or engage in undesirable 
learning behaviors, enabling the system to provide accurate, real-

time feedback [5]. Within open-ended interactive environments, 
the estimates can also assure that models that detect skill 
demonstration can be reused for new tasks/domains and students, 
paving the way for reliable, scalable performance-based 
assessment. 

In educational domains, validation is often done at the student-
level, where models are built using one group of students’ data 
and tested on new students whose data were not in model 
construction [6], [1]. This ensures models will remain accurate 
when applied to completely new students. It is possible, though, 
that this method may fail to identify specific instances when 
models do not predict adequately, particularly if some other aspect 
of those cases, other than the student, is not taken into account. 
We explore this topic here in the context of determining how well 
two data-mined models that assess whether students demonstrate 
scientific inquiry skills, built and validated for one science topic 
[4], [7], can predict demonstration of those skills for a new 
science topic and a new set of students. Few papers have tested 
model effectiveness on different topics ([1] is an exception), but 
validating at this level is essential if models will be used beyond 
the topics in which they were originally developed.  

In our approach, we first take this new topic and student sample, 
and construct a test set stratified at the student level, where 
students are equally represented in the test set. When doing this, 
we find that there is an imbalance in the nature of behaviors 
demonstrated by students. In particular, there is an imbalance in 
the number of trials collected by students in this set, a factor 
which could influence predictive performance of our models (cf. 
[7]).  To address this, we construct a second test set, this time 
stratifying over the number of trials, to ensure a greater balance in 
student behaviors. We show that utilizing this different kind of 
stratification can unveil a different performance profile than 
conducting student-level validation alone, revealing new insights 
on the predictive limitations of the models. 

2. PRIOR WORK BUILDING INQUIRY 
SKILL MODELS  
In [4], [7], we developed data-mined models that assess students’ 
demonstration of scientific inquiry process skills. Skills are 
assessed as students conduct inquiry within Inq-ITS activities 
(formerly known as Science Assistments [8]). This environment 
aims to automatically assess, scaffold, track, and provide real-time 
feedback on students’ scientific inquiry skills. Inquiry is assessed 
as students explore within interactive simulations and use inquiry 
support widgets that facilitate experimentation. 

Inq-ITS activities are performance assessments of inquiry skills. 
The actions students take within the simulation and work products 
they create are the bases for assessment [8]. This paper focuses on 
assessment of two process skills, designing controlled 
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experiments and testing stated hypotheses. Briefly, students 
design controlled experiments when they generate data that make 
it possible to determine what the effects of independent variables 
(factors) are on outcomes. They test stated hypotheses when they 
generate data that can support or refute an explicitly stated 
hypothesis. Since these are process skills, students are assessed 
based on the actions they take while collecting data. 

To build data mined assessment models, we employed text replay 
tagging of log files [9] to generate labels from which, in part, 
models were derived. A text replay is a “chunk” of student actions 
in text format that contains information enabling a human coder to 
identify what occurred in that sequence of actions. For our 
domain, text replays leverage human judgment to identify whether 
students demonstrate inquiry skill. These labels are then used as 
“ground truth” for whether or not students demonstrate a skill, and 
subsequently for building and validating detectors. 

Prior to this paper, we have validated models for these skills for 
one physical science topic, Phase Change, and one student sample 
[4], [7]. One goal of this paper is to determine if these models can 
be applied to a new Physical Science topic, Free Fall, and to a 
new sample of students. As such, we first present a high-level 
description of the text replay tagging process within the context of 
assessing the two skills for Phase Change. A fuller description of 
the distillation process appears in [4], and of the model 
construction approach in [7]. 

2.1 Phase Change Activities 
The Phase Change activities [8] aim to promote understanding 
about the melting and boiling properties of ice. Students learn 
about the topic by engaging in semi-structured scientific inquiry 
activities with a simulation. First, students are given an explicit 
goal to determine if one of four factors affects various measurable 
outcomes (e.g. melting or boiling point). Students then formulate 
hypotheses, collect and interpret data, and warrant their claims to 
address the goal. As mentioned, we developed data-mined models 
that infer whether students design controlled experiments and test 
stated hypotheses [4], [7]. These skills are demonstrated when 
students collect data to test their hypotheses in the “experiment” 
task. As such, we describe this task in more detail. 

In the “experiment” task, students are shown the Phase Change 
simulation, graphs that track changes of the substance’s 
temperature over time, and a table that captures all the data they 
collected thus far. They experiment by collecting data that aim to 
support or refute their hypotheses. For space reasons, we do not 
include a visual of this interface (it can be seen in [8]), but it is 
similar to the Free Fall interface shown in Figure 1. Students 
collect data (trials) by changing the simulation’s variable values, 
and running, pausing and resetting the simulation. Next, we 
describe how these interactions were distilled and tagged with 
skill demonstration. 

2.2 Distilling Raw Logs and Building Clips 
Interaction data was collected from 148 middle school students 
who conducted inquiry within four Phase Change activities. All 
students’ fine-grained actions were timestamped and recorded by 
the system. These actions included: interactions with the inquiry 
support widgets, interactions with the simulation including 
changing simulation variable values and running/pausing/resetting 
the simulation, and transitioning between inquiry tasks. 

Contiguous sequences of these actions were then segmented into 
clips. A clip contains all the actions necessary for a human coder 
to identify (label) whether or not students demonstrate the inquiry 
skills. For our domain, a clip has all actions taken while 

formulating hypotheses (“hypothesize” actions) and collecting 
data (“experiment” actions) in an activity. Clips are the grain-size 
at which data collection skill is labeled, and in turn, student 
performance is assessed. From there, models describing what it 
means to demonstrate skill were trained and validated based on 
(1) labels indicating whether students demonstrated skills within 
clips, and (2) a set of features that summarize clips. 

Humans determine whether or not students demonstrate skills 
within clips, by labeling text replays of clips with one or more 
tags (see [4] for an example of a text replay). For us, text replays 
highlight hypothesis creation and experimentation processes. This 
enables human to more easily identify skill demonstration. Clips 
are tagged as designing controlled experiments, testing stated 
hypotheses, both, or neither. In this prior work, we achieved 
acceptable levels of inter-rater reliability in labeling clips [4]. 

With clip labels in place, features were defined next that 
summarize clips. We defined a set of 79 features related to 
students’ experimentation [4], [7]. Features include basic 
aggregations of actions and domain-specific counts indicative of 
skill demonstration. Examples include: number of trials run, 
counts related collecting unconfounded data, a count for changing 
the variable stated in a hypothesis, and number of simulation 
pauses. With clip labels and summary features defined, we next 
describe the model building process. 

2.3 Extracting Models from the Data 
To construct our models, we employed an approach that mixed 
traditional data mining, iterative search, and domain expertise, 
discussed in [7]. This procedure yielded two models, one for each 
skill, that take as input a clip (note that each student contributes 
multiple clips) and, by examining the clip’s feature values, predict 
if a student demonstrated skill in that clip. Briefly, this procedure 
worked as follows.  

First, human coders tagged three sets of clips, a training set, a 
validation set, and a held-out test set (more detailed descriptions 
of these sets appears in [7]). Next, an initial candidate feature set 
of promising predictors was selected by finding features that 
correlated moderately with the skill labels from the training set. 
This reduced the original 79 features to 11 candidate features. 
Then, a manual backwards elimination search was performed to 
find the optimum feature set yielding the best predicting model. 
At each stage of the search, a feature with low theoretical support 
was removed from the candidate feature set. Theoretical support 
for a feature was determined by a domain expert based on theory 
on features indicative (or not indicative) of skill demonstration. 
Then, J48 decision trees were built from the candidate feature set 
and training clips to yield a candidate model. The candidate 
model was then tested against the validation set of clips to 
determine how well it predicted and kept if it predicted better than 
its predecessor. This process repeated until predictive 
performance no longer improved for the validation clips. The 
rationale for using decision trees is described in [4]. 

Predictive performance was measured using A’ [10] and Cohen’s 
Kappa (κ). A' is the probability that when given two clips, one 
labeled as demonstrating skill and one not, the model will 
correctly identify which clip is which. A model with A' of 0.5 
performs at chance, 1.0 indicates perfect performance. κ measures 
how well the model agrees with the human label; 0.0 indicates 
chance-level performance, 1.0 indicates perfect performance. 

Once optimal models were found, their final predictive 
performance was measured against the held-out test set containing 
clips not used in model construction. This step was needed to 



better estimate true model goodness since the validation set was 
used during model selection. In prior versions of these models [4], 
cross-validation was conducted at the student-level, where 
students were included in either the training or test folds, 
validating that the models could generalize to new students. 

 

Figure 1. Example Free Fall Activity 

2.4 Prior Results and Next Steps 
In [7], we found that both assessment models could predict skill 
demonstration for unseen clips quite well. The designing 
controlled experiments model was quite good at distinguishing a 
clip in which the skill was demonstrated from a clip in which skill 
was not (A’ = .94). It also matched the human coder’s labels 
better than chance (κ = .45). Similarly, the testing stated 
hypotheses model performed very well, A’ = .91, κ = .70. These 
findings meant that the data-mined models could adequately 
identify skill demonstration in the Phase Change inquiry activities 
for this sample of students.  

Though their performance within the Phase Change microworld is 
encouraging, these metrics do not provide a measure of their 
generalizability to other science topics, because the models were 
built solely from data for the Phase Change activities. 
Furthermore, the model construction procedure in [7] used the 
same students in the training/validation clip sets as in the test set. 
Thus, we aim here to explore the generalizability of these models 
to a new Physical Science topic, Free Fall. To do so, we collected 
data from new students who conducted inquiry Free Fall 
activities, tagged their resulting clips with skills, and re-measured 
the models’ predictive performance. Using data from a different 
science topic enables us to assess model transfer to different 
topics [cf. 1]. Using new students also enables us to assess how 
well these models will work for a broader range of students. 

3. FREE FALL INQUIRY ACTIVITIES 
The Free Fall activities in Inq-ITS (Figure 1) aim to foster 
understanding about factors that influence the kinetic, potential 
and mechanical energy of a ball when it is dropped. The two 
factors students could change were the ball’s mass and starting 
height. The look-and-feel and structure of these activities is 
generally similar to Phase Change, but with some notable 
differences. First, the layout of components on the screen was 

redesigned to improve the organization of information and 
instructions. Second, the number of factors the student could 
manipulate was smaller (2 here versus 4 in Phase Change). Third, 
students could only specify one hypothesis in total. Fourth, 
students were shown three graphs in the “experiment” phase to 
track each of the dependent measures over time. Finally, unlike 
Phase Change, the table showing the results of students’ trials was 
always visible. Next, we describe which clips were tagged to test 
the generalizability of the models. 

4. DATA SETS 
We collected data from 292 eighth grade students’ interactions 
with the Free Fall activities. None of these students were part of 
the original data set used to construct the models. Students 
attended three different schools in suburban Central 
Massachusetts. All had prior experience conducting inquiry in 
Inq-ITS for topics other than Free Fall. Students engaged in at 
most five different Free Fall activities. As per the text replay 
tagging process, clips were distilled to cull out student actions 
relevant to hypothesizing and collecting data. In total, 1580 clips 
were generated. 

Since tagging all clips would be time consuming, we selected a 
representative set of clips. One approach for selecting clips for the 
test set is to apply student-level stratification when choosing clips 
to code, so that each student is equally represented in the data set. 
We note that this is distinct from student-level cross-validation, 
where students are distributed to either training or test folds, e.g. 
[6], [1]. Equally representing all students in a test set, and using 
students different than those used for model construction provides 
more assurance that such models will work for new students. In 
our work, this stratification was performed as follows: 
• Student-stratified test set (291 clips): One clip per student was 

randomly selected and tagged by a human coder. Only clips in 
which a student ran the simulation at least once were 
considered for selection. One student did not appear in this set, 
because they had no clips with at least one run. In this set, 
90.0% of the clips and 87.6% of the clips were tagged as 
designing controlled experiments and testing stated 
hypotheses, respectively. 

During the clip selection process, we noticed that a 
disproportionate number of clips had exactly 3 simulation runs. 
As shown in Table 1, 70.4% of all clips distilled had 3 simulation 
runs, and 74.6% in the student-level test set. Though these 
percentages may reflect actual student behavior, it is possible that 
some aspects of the models’ performance may not be captured by 
stratifying solely in terms of the student. In particular, the models’ 
performance may be impacted by different numbers of simulation 
runs. This is important because we aspire to have models that 
work for varying numbers of simulation runs, particularly since 
we activate scaffolding in the live system after students run the 
simulation [7]. To address this, we constructed a second test set 
that ensures clips with a given number of simulation runs are 
equally represented. This stratification is described below: 
• Run-stratified test set (245 clips): To generate a test set that 

balances the number of runs per clip, we determined an 
optimal number of clips to have per stratum. Given the 
distribution in Table 1, we used runs = 5, 49 clips, as the base. 
We then randomly select 49 clips for each stratum with 
exactly 2 simulation runs, 3 runs, etc. The final stratum was 
for clips with more than 5 runs. As in [7], we do not consider 
clips with fewer than 2 simulation runs, because 
demonstration of skill requires at least two trials to be 
collected. In this set, 93.1% of the clips and 83.3% of the clips 



were tagged as designing controlled experiments and testing 
stated hypotheses, respectively. Students’ work could be 
represented more than once in this test set. 

We note it would be more optimal to stratify over both runs and 
students, but too few clips would have been available for testing. 
In the next section, we present our models’ predictive 
performance against these two held-out test sets. 

Table 1. Counts of Clips by Number of Simulation Runs 

 

5. RESULTS 
We estimate how well the two inquiry skill assessment models 
built for one science topic, Phase Change, can predict skill 
demonstration for another topic, Free Fall, and a new sample of 
students. Generalizability is estimated by measuring how well the 
models predict skill demonstration in two held-out test sets 
containing clips pertaining to Free Fall activities. In the first test 
set, clips were randomly chosen via student-level stratification. 
Given our interest in understanding how well the models work at 
finer grain-sizes [7] and the earlier finding that clips with exactly 
3 simulation runs were over-represented, we constructed a second 
test set. This set had clips randomly chosen to ensure a balanced 
number of clips with a given number of simulation runs. 
Performance is again measured using A' and Kappa (κ), though 
we also report precision and recall for our models for 
completeness. We focus on these metrics because they 
compensate for successful classification by chance, which is 
important given the imbalance in clip labels. Furthermore, as will 
be shown below, most of the models’ precision and recall values 
are near maximum, whereas the A’ and κ are more varied. Thus, 
we believe A’ and κ may better reflect models’ limitations. 

5.1 Student Stratification Performance 
As shown in Table 2, both models performed quite well at 
predicting clips in the student stratified test set. The designing 
controlled experiments model could distinguish a clip in which 
skill was demonstrated from a clip which it was not at a rate of A’ 
= 90%. It also highly agreed with the human coder’s ratings, κ = 
.65. Performance for the testing stated hypotheses model was also 
high, A’ = .91, κ = .62. These findings imply that the detectors 
built for Phase Change generalize to another Physical Science 
topic, Free Fall, and to an entirely new student sample, under 
student-level stratification.  

Recall this set has exactly one randomly chosen clip per student. 
Furthermore, as shown in Table 1, a majority of these clips had 
exactly 3 runs.  Though a majority of students may run exactly 
three trials, providing credence to being able to use the detectors 
as-is to assess students, the models’ performance may differ based 
on the number of trials collected. We turn next to performance on 
the run-level stratification test set.  

5.2 Run Stratification Performance 
As shown in Table 3, the performance profile on the run stratified 
test set was different than on the student stratified test set. Though 
the performance of the testing stated hypotheses model remained 
high (A’=.78, κ=.59), performance dropped for the designing 
controlled experiments model, particularly for raw agreement with 
labels (e.g. κ) (A’ = .84, κ = .26). We inspected these results more 
closely by recalculating the metrics for each stratum of 49 clips. 
As shown in the bottom of Table 3, when model confidence is not 
taken into account (κ), the designing controlled experiments 
model had very low agreement with human labels for all run-
levels (κ = .08 - .17) with the exception of clips with exactly 3 
simulation runs (κ = 1.00). The testing stated hypotheses model 
fared better on agreeing with human labels on all strata (κ = .40 - 
.78) except for clips with exactly 4 simulation runs (κ = .00). 
When model confidence is taken into account (A’), both models 
could distinguish clips that demonstrated skill from those that did 
not fairly well on each strata, with the exception of the designing 
controlled experiments for at least 5 simulation runs (A’ >= .61). 

Table 2. Overall Performance on Student-Stratified Test Set 

 

In summary, both models performed well under student-level 
validation. However, under run-level validation, the testing stated 
hypotheses model remained strong while the designing controlled 
experiments models’ performance suffered. In the next section, 
we discuss the implications of these finding on generalizability. 

6. DISCUSSION AND CONCLUSIONS 
We investigated whether data-mined models that assess two 
inquiry process skills for activities in one science topic [7] could 
be reused as-is for assessing those same skills for a new topic and 
new student sample. To explore this, we collected a new set of 
student interactions for the topic, employed text replay tagging 
[9], [4] in which student interactions (clips) were labeled by 
humans with skill demonstration, and measured our models’ 
ability to predict those labels. The overarching goal of this process 
is to measure the degree to which these models can enable 
scalable, reliable performance-based assessment of the inquiry 
skills as students conduct inquiry within simulations [8]. 

Central to this work was choosing the clips to code that would 
yield good estimates of model performance, since coding all 
student interactions would be too laborious. One approach was to 
represent the new students equally in the held-out test set. We 
noticed that when we stratified this way there was an imbalance in 
clips for an important kind of student interaction indicative of 
skill, the number of times students ran the simulation. As such, we 
constructed a different held-out test set that ensured an equal 
representation over the number of simulation runs. 

Under student-level stratification we found that the assessment 
models of each skill performed quite well in this new domain and 
new sample of students. These findings provide evidence that the 

Simulation   
Runs

# Clips Distilled 
in Total

# Clips in 
Student Strat. 

Test Set

# Clips in          
Run Strat.      

Test Set

< 2 167 20 0

2 91 18 49

3 1112 217 49

4 102 15 49

5 49 10 49

> 5 59 11 49
Total: 1580 291 245

True N True Y True N True Y

Pred N 26 20 Pred N 21 7

Pred Y 3 242 Pred Y 15 248

* Pc = precision; Rc = recall

Testing S tated 
Hypotheses

Pc = .99, Rc = .92 Pc = .94, Rc = .97

A' = .90, K = .65 A' = .91, K = .62

Designing Controlled 
Experiments



models can be applied as-is to new topics without retraining [cf. 
1]. Under run-level stratification, a different performance profile 
for the models emerged.  The testing stated hypotheses assessment 
model still maintained high performance providing even stronger 
evidence of its generalizability. However, performance for the 
designing controlled experiments detector decreased. This model 
worked best for clips with exactly three simulation runs, the most 
prominent kind of clip; performance on other clips was poorer. 
Though performance was poorer, if the distribution of clips with 
given numbers of runs (Table 1) is representative of the student 
population we aim to assess, this model still can be used to assess 
in the new topic. As a side note, we did examine why performance 
was hindered (not presented in the results section). We found that 
clips that were misclassified primarily fell under a branch of the 
decision tree with features reflecting domain complexity (the 
number of variables changeable by the student). One possible way 
to improve generalizability would be use ratio-based features (e.g. 
percent of pairwise controlled trials over all possible pairs of 
trials) instead of a raw counts [7] for handling domain complexity. 

Table 3. Performance on Run-Stratified Test Set 

 

This paper offers two contributions towards assessing the 
generalizability of data-mined models used to assess students’ 
skills. First, like prior work [1], [3] we measure the transferability 
of models built for one task to a new task and new set of students. 
In our case, we applied data mining to assess students’ inquiry 
skills within physical science simulations. Though we have 
increased evidence of models’ generalizability, we note that the 
look-and-feel and task structure of the physical science activities 
were generally similar. For other science domains like biology, 
the nature of the experimentation process may differ; further 
research is needed to determine if our models will generalize to 
entirely new types of tasks and science domains  (cf. [8]).  

Second, we showed how different kinds of stratification in such a 
test set can reveal limitations on the performance of data mined 
models. In particular, the ways in which a model will be used 
should be considered when considering generalizability. In our 
work, we aim for our models to be reusable to assess all students, 
trigger scaffolding [8], and work regardless of how much data the 
student collected [7]. Thus it was essential for us to consider 
performance in the new simulation at the run-level since this is the 
granularity at which we aim to assess student work and provide 
scaffolding. Stratifying on other variables such as the total number 
of student actions or the specific inquiry activity in question [cf. 1, 

3] may reveal other differences in performance. Considering these 
additional points may provide more evidence to the reusability of 
data-mined models in different contexts or reveal limitations in 
the models that can be addressed to improve performance in 
specific cases. 
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Pred N Pred N

Pred Y Pred Y

Runs A' K Pc Rc Runs A' K Pc Rc

2 1.00 .08 1.00 .18 2 .84 .71 .89 .94

3 1.00 1.00 1.00 1.00 3 .88 .40 .91 .98

4 $ .00 1.00 .98 4 .84 .00 .90 1.00

5 .66 .14 1.00 .66 5 .70 .51 .89 .98

>5 .61 .17 .97 .76 >5 .79 .78 .98 .98

* Pc = precision; Rc = recall
$ = A' could not be computed because only one class label was present

19

True Y

5

199

Testing S tated Hypotheses

True N True Y

16

1

60

168

Pc = .99, Rc = .74 Pc = .91, Rc = .98

A' = .78, K = .59

Designing Controlled 
Experiments

A' = .84, K = .26

True N

22


